Distribution Free Prediction Sets.
نویسندگان
چکیده
This paper introduces a new approach to prediction by bringing together two different nonparametric ideas: distribution free inference and nonparametric smoothing. Specifically, we consider the problem of constructing nonparametric tolerance/prediction sets. We start from the general conformal prediction approach and we use a kernel density estimator as a measure of agreement between a sample point and the underlying distribution. The resulting prediction set is shown to be closely related to plug-in density level sets with carefully chosen cut-off values. Under standard smoothness conditions, we get an asymptotic efficiency result that is near optimal for a wide range of function classes. But the coverage is guaranteed whether or not the smoothness conditions hold and regardless of the sample size. The performance of our method is investigated through simulation studies and illustrated in a real data example.
منابع مشابه
Online Learning for Distribution-Free Prediction
We develop an online learning method for prediction, which is important in problems with large and/or streaming data sets. We formulate the learning approach using a covariance-fitting methodology, and show that the resulting predictor has desirable computational and distribution-free properties: It is implemented online with a runtime that scales linearly in the number of samples; has a consta...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملRNA secondary structure prediction using stochastic context-free grammars and evolutionary history
MOTIVATION Many computerized methods for RNA secondary structure prediction have been developed. Few of these methods, however, employ an evolutionary model, thus relevant information is often left out from the structure determination. This paper introduces a method which incorporates evolutionary history into RNA secondary structure prediction. The method reported here is based on stochastic c...
متن کاملPerformance of Percentile Based Diameter Distribution Prediction and Weibull Method in Independent Data Sets
Diameter distribution is used in most forest management planning packages for predicting stand volume, timber volume and stand growth. The prediction of diameter distribution can be based on parametric distribution functions, distribution-free parametric prediction methods or purely non-parametric methods. In the fi rst case, the distribution is obtained by predicting the parameters of some pro...
متن کاملNumerical Prediction of Temperature Distribution in Transient RTM Process
Resin Transfer Molding (RTM) is a composite manufacturing process. A preformed fiber is placed in a closed mold and a viscous resin is injected into the mold. In this paper, a model is developed to predict the flow pattern, extent of reaction and temperature change during filling and curing in a thin rectangular mold. A numerical simulation is presented to predict the free surface and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Statistical Association
دوره 108 501 شماره
صفحات -
تاریخ انتشار 2013